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An exact expression in the form of a multiple integral is obtained for an
acoustic wave which has a circular or straight front and which undergoes
diffraction at the vertices of a polygon. Formulas are alsoc obtained for
any term of the geometric-acoustical expansion of this wave near 1ts front.

1. Various representations of a wave having a front in the form of a

oiroular arc. In the region ¢ > ¢,> 0, 0<p<Too, 8,<8 <0, (0,0
are polar coordinates), we consider the solution u(t, P, 8) of the wave

equation Up = Upp + p“lup-% 0 2 ge (1.1)

which is equal to zero for p > t (l.e. ahead of the front) and which is
homogeneous ‘of degree zero in ¢ and p . A wave from a point source of
constant intensity which 18 cut ln at ¢ = O and the diffracted wave in
problems of diffraction of a plane wave by a wedge [1 and 2] are examples
of solutions of this type. According to [1], such a solution is represent-
able, for p < ¢, in the form

u=Rel (§), =F—@—W%w (1.2)

where U(c) is an analytic function of the complex variable (¢ which is
purely imaginary on the arc § = €'%, 8, <8 <0, Conversely, for any such
function g({) , Equation (1.2} provides & solution of Equation (1.1) which
possesses the properties indicated. Setting

£ = elld+iny, U@ =U,(+ i) (1.3)
in {1.2) and taking intc consideration that u =0 for p =t {i.e, for
n = 0), we obtain that y = Re U, {6 + ¢n) 1s an odd function of n and that

u = UI(S‘{‘”});U}(O*—”}) zln U]_’ (e)‘—‘%l:“Ulm(B)—i“..- (1.4)
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Expressions for & multiply diffyacted wave 1303

Using Equations (1.2) and (1.3) and setting T = ¢t — p , We obtain
t/e Tp

(Y S

The equations which have been written imply that

u = Z ,w L 1 (@) (1.5)

£i(¥) = v¥BT( + %),  a,@)= iV a2 U, (6) = —Val2elU’ (%) (1.6)

According to Section 8 of the paper [3] the series (1.5) must have the
same form as the series (8.2) of [3]. Therefore, (the L,,ea(e) are the same
as in (3]) (__ 1

a; (8) = L2,9a (), a (8) = a, (6) (1.7)

The series (1.5) gives the geometric-acoustical expansion (ray expansion)

of the wave of form (1.%).

It follows from (1.%) to (1.7) that for an analytic function &(o + ¢n)
which i8 real for n = O, we have

5 8 .
i (—1)Lgja(®) iy a(6+ i) +a(®—inoy
N R e Vaa 7 (1.8)
It 1s easy to see that this equation is also valid for any analytic func-
tion ale + tn).

2. Investigation of the solution near the doundary. In the sector
8,< 8 < 8, let us consider the solution (1.2) of Bquation (1.4) which satis-
fies the boundary condition

ou/dén = coul dt (¢ =const, 0 <c<<o0) (2.1)

for o =6, .

Here du/0n = p7lu /30 in the inner normal derivative to the boundary
§ = 6, of the sector. In particular, for o = O the condition (2.1) reduces
to the condition au/3n = 0 and for ¢ = «» to the condition au/3t = O,
l.e. to the condition u = O , since for ¢ < p We have y = O for the solu-
tion (1.2). Por a steady-state oscillation y = pei®!, condition (2.1)
reduces to Leontovich's well-known condition dv/dn = icwv.

For the solution (1.5), the boundary condition assumes the form
Re(c+sinin)a(® 4+ in) =0 for n>0 (2.2)

Therefore, the function a (§ -+ in) 1s continued analytically into the
region 20, — 0, <6 <0,;, 1in asccordance with Equation

[c+sin(®@ —0, +im)la@®@ + in) =v(® + in)
YO + in) = — Rep (20, — 0 + in) + i Imp (20, —0 + in)
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It follows from this that (c + sing)a (8, |+ @) is an odd function of @

c+sing)a(o, +9)=—(c—singa®,—9¢), ¢=06—06; (23)

Therefore, in the case of condition (2.1} for @ =8, {o # O) all deri-

vatives a® (0,) are expressed in terms of &% a% ....al®*"V (2.4)
a(0) =0, a"(8)=~—2ca’ (8), aV(0)=14c"(a" (B) —a’(®))), ..

3. Reflection from & doundary. In the region y > O let the wave
u; = Re U(C‘) propagate, the wave having a circular front with center at
(x,, v )» ¥,> 0, and let the condition (2.1) be stipulated on the boundary
vy = O, where 3/3n = 3/3y . We shall seek the reflected wave by the method
of Sobolev [1] in the form v = Re ¥({g) , where

L = [—t-—w (ﬁ;—i)ll’}ewk, £ — 2, = ppcosPx, (—1Fy-+y, =pxsinbdx

(h=1.2)
Then (,= {s for y = O, Setting u = u,+ v in (2.1), we obtain
Re [(VV —=UNi(l =)+ 2LV +UN =0 for ImZ>0 (3.1)

Therefore, the expression in square brackets can only be equal to 5t ,
where 5 4is & real constant. HNoting that for { = ¢'®, [ and ¥V are
purely imaginary quantities (see Section 1), we find B = 0 and

1 _i(1w§2)~—26§ ’ 39
V (C) i (1*_@2) -+ 20[; U (Z,) ( . )
Taking any §, such that |C°\ = 1 (the arbitrariness in the choice of
arg {, .does not affect the quantity v )}, we may write

v

V@ =\V(ds,  v=ReV (%) (3.3)
%o
In particular, if y, is a wave emanating from & source of unit intensity
which starts at the instant ¢ = O at the point {(x;, ¥, ) , then
1 t 12 )‘f:} U 1 1
= —In{— 4 |—5— == — o—In
;= 5—In Ln + (gﬁ , (&) 521l
and we obtain for the reflected wave v = Re V{({,) , by setting o = cos vy,
. 1 . tetY i
V(C)«--—E(lng—}—szTlnm) (3.4)
Let us now write out the ray expansion tor the reflected wave. The ray
expansion for the incident wave u,= Re U({,) has the form (1.5) to (1.7),
where u, (, p and © should be replaced by wu,, §,,p, and 8, . The
reflected wave v = Re V({s) is obtained from the incident wave by substitu-
ting ¥ and 3 for U and ¢, . Therefore, the ray expansion for the
reflected wave has the form
hod (—1)3ngb (82) - 0 (o
v= N ggm i@ b0 =—) Fe ) @5

=0
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From (3.5), (3.2) and (1.6) we obtain
sin 0 —¢ .
b (0) =k (0) a (8), k(0) = S0 T (3.6)
4., Diffraction of & wave with a oiroular front, Let the wave (1.2) with
a cltcular front and center at the point 0, undergo diffraction by an angle
with vertex ¢, . In this Sectlon it will be assumed that the point 0,
does not lle on a side of the angle. Boundary conditions of the type (2.1)
are specifled on the sides of the angle. The values of the coefficlents o
are not necessarily the same on the two sides of the angle. Let (p,8) and
(r,m) be polar coordinates with poles 0, and (¢, and parallel polar axes;
for the point 0, , we have r =R, o =8 .

According to Sectilon 2 of [3], the solution of this problem is the sum
of the incident, reflected and refracted waves. A method of forming the
reflected wave has been explalned above., The diffracted wave was obtalned
in [3] in the form of a ray expansion, the serles (8.4), which converges
near the front. We shall express the sum of this series in the form of an
integral. To this end, we write the seriles (8.4) of [3] in the following
form, taklng into account the form of the function p, in (1.5), (1.6) and
using the notation a (1 —[— ﬁ) m@,B)=q@®, 9

1YL, BL 0GB, @) itk
Z‘o ;0 2k REF e TG R 2) (4.1)
It follows from (4.1) that
S 2 Z( v :L“BLZi 10,9 w0 g 4y
oy 2PRRIREY R T () T (k£ 172)
Applying Formula (1.8) to the series in (4.2) twice, we find
ow 1 ¢ 7* (B A ino, @+ im)dy
57:2?§'VW+T4WV—R“VU+XV*ﬂ (4-3)
L B e (R X (RSN
* B+ e + i) =2q B £ ing @ imy)
(the sum 1s taken over all four combinations of the = signs).
Either from Equation (u 3) or directly from (4.1) we can find that
w = gﬁq (B + g @ - iny) dngd, (4.4)

where [), 1s the region R @omrh,—~ 1) 4 r (coshm; — 1) <7 7.

We note that the function p*= aw/a; is the diffracted wave for the inci-
dent wave u*= du/3t , where u 1s a wave of the form (1.2). An exampie of
thls type 1s the wave u* due to an instantaneously acting source (1.e. the
source is cut in and then immediately afterward cut out)

W VR > u* =0 (t<p) (4.5)
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Here
U ()= — (2m)"In g, a(9)= (8m)™
In this way the right-hand side of (4.3) with ¢ (B, ¢) = (8n) "= m (¢, B)

glves the solution w* of the plane problem of diffraction of the wave (4.5)
due to the source by & wedge under the boundary conditions (2.1).

The function m(g,B) is determined in Section 8 of [3]. A comparison of
Equation (8.3) of [3] with Equations (1.4) to (1.7) of this paper results in

m (g, B) = iV 72U, (¢), Re U, (¢ -+ in) =u° (4.6)
where p° 1s the diffracted wave (for the same wedge) corresponding to the
incident plane wave {3.1) of [3] .

In the case when Equation (1.1) 1s considered 1in the sector §,< ¢ < §,,
with the boundary condition u =0 for ¢ =6, and ¢ = 6;, the function
w® and U, can be found by the methods set forth in {1]. Then

4

. _ Vapz ko (P —Th),
m(g, B)=m (B, ¢) = 2—(0—2———65 kgl (— 1)* cot 72—(02_——_617 (4.7)
le"T;;:n—Bl, 72:_T4:n+B1, @1:(]9'—017 3123—01

In the case of the boundary condition d3u/3n = 0 , one need only change
the signs of the first and fourth terms of the sum in (4.7).

For the case of the boundary condition (2.1), m(p,B) 1s determined from
(4.6), where , vsinve dW n
Ud @) = sy bomsoo ve (v=%)
If the wedge at which diffraction takes place 1s situated the same way as in

[2], then dW/d{ 1s determined by Equation (11) of [2) for y = m — B; here
y and ( are the same as in [2].

We note that we always have m (@, B)==m (3,¢) (Expression (4.1) should
not be altered if the positions of the source and the point of observation
are interchanged).

5, Multiple diffraoction. Let the wave 1y, having a front in the form of
a circular arc with center 0, be diffracted by an angle with vertex 0, and
stralght sides on which boundary conditions of the form (2.1) are specified.
The diffracted wave u, is one again diffracted by an angle with vertex 0z
and so on. The values of the coefficlent o of (2.1) may be different on
the various sides of the angles; the values o = O and ¢ = » will also
be allowable. An expression 1s sought for the wave 1y, which is obtalned
after diffraction at the vertices 0;,,..., O, (the same vertex may appear
several times, with different subscripts, in the sequence 0,,..., 0,).

This formulation includes the problems of diffraction by a slit, a seg-
ment, a polygon, or by several polygons arbitrarily situated in the plane
(except in cases when a point of Junction of wave fronts strikes a vertex).
In the case of diffraction by a slit, reﬁresentations of diffracted waves
by multiple integrals were obtained in [4]. In the case of diffraction by
a polygon, an approximate representation of the diffracted waves near the
front only was obtained in [5].

Let r,,p, be polar coordinates with pole 0, (k¥ = 0, 1, ..., g) and
parallel polar axes. Each point 0,,, has the coordinates A,, B,+ ™ 1in
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the systen with pole 0, . We denote by u,(7,, »,, ¢,) the wave with cen-
ter 0, which 1s obtained as a result of diffraction of the wave uy, by the
angles 0,,..., 0,; here T, =t —Ry— ... — Ry —r;. Let 1,20 be
the front of the incident wave u, and let y,= O ahead of the front. Then
17,= 0 1is the front of the wave y,, and for +,< O we have y,= 0 . Let
the incident wave u, be represented by Equations (1.5) to (1.7) for 8 = g,
p =res T =T . Then the wave 1y, 1s represented by the ray expansion (8.4)
of [3] near the front, where B, o, ' R, T are replaced by B4, ®,, ", Ao,
v, . By transforming this seriles to a form analogous to (4.1) we obtain a
representation of the wave. y, 1n the form of a sum of waves each of which
is expressed by a series of the form (1.5), but with different g,(¢) and
fJ(T) . After diffraction at the vertex 0,, each of these waves agaln pro-
vides a wave of the form (4.1). By adding these  latter we obtain a wave y;.
Considering diffraction of the wave ug at the vertex 0, and then at the
vertices 0,,..., 0,, We obtain analogously (for 1 = 0)

[e0] 00
s = . bjov.dg Figt.otig wspy (Ts) (5.1)
S
Jo=0 is =0
Jote..t]
(— 1)10 sp,. P, . ngs‘le}Ps q
by, = e M D (5.2)
Joreds T ot tigtL . jo+! Jg—1+Y2 gtYe :
S A ARFAD SUE X R

s = (s (ﬁm S ﬁs-la (PS) =
= a (7 4 Bo) my Bo, T+ By) - - . My Bozy T Bor) s Booa, 95)

Each function m,{g,_,, ®,) 1s determined analogously to m(g, p) 1n
accordance with Equation (4.6), where y° 1s now the wave which arises upon
diffraction of a plane wave (the same as in (%.6)) moving from 0,., to o,
at the vertex ¢, . The serles (5.1) 1s absolutely and uniformly convergent
in the vilcinity of the front of the wave y, . The width of the region of
convergence decreases to zero as we approach points of junctlon of the wave
fronts of y, and u,., . Grouping the terms of the serles, we obtain the
ray expansion of the wave y,

Us = Z Agn (rsy (Ps) fn+s/2 (13)1 Agn (r51 (Ps) = 2 bjo---jg (53)

n=o0 Jgte.tig=n

By transforming the series {5.1) using the method of Section 4, we obtain
By = —————= \ ... Moy « « oy Pocy =+ iMsor, @ -+ iMs) AN - - . dN
$ 7 ol ey 2o + ing Bs-1 MNs-1> Ps s 0 (5'4;

s+1i
The region of integration D,., 15 determined by the inequality

R, osbmyy — 1) + . . . + Ry ko) — 1) 4 1, fosin, — 1) < 75 (5.5)

It is also possible to represent au,/at in the form of an g~fold integral,
analogously to (4,3).
Equations (5.1) to (5.4) which have been derived, and also Equatlon (8.%)

of [3], are valid for the case when none of the segments 0,0, 010y, . . ., 05 1Us
which constitute the path of a ray up to the vertex ¢, lies on the boundary.
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In the case when I of them lie on the boundary, the factor 2% appears in
these formulas., This happens of the following reason. The wave y,, for
example, is caused by diffraction at the vertex 0, of the waves 1y, and v,
simultaneously, the latter belng obtalned by reflection of u, from the side
of the angle ¢, visible from the point ¢,. If the segment 0,0, lies on
the boundary, then, as can be shown, U,=y; and only one~half of the wave
obtained by diffraction at point 0, should be considered as the incident
wave for the vertex (,.

Equation (5.4), as also (4.3) and (4.%), is valid not only in the vieinity
of the front, but also in the entire region occupied by the diffracted wave
u, » except for these values of ¢, for which the function My (By=y s @,) has
a singularity, l.e. except for the radii which connect the point ¢, with
points of Jjuncture of the wave front of u, and other fronts.

To prove this we note that near the front the function (5.4) colncides
with §5.1g. Therefore, it satisfies Equation {1.1) and the boundary condi-
tion (2.1) near the front. But, since 1t is analytic, (5.4) satisfies these
everywhere except for the radil indicated above. It remains to prove by
induction that the wave u, is preclisely the wave which comes about as a
result of diffraction of the wave y,., at the angle ¢,. Let the wave y,,
formed by diffraction at the point (,., be expressed by the formula obtained
from 25.4) by substituting s — 1 for &, and by u,_,= 0 in the shadow
zone {(a shadow can be caused by the presence of an obs%acle, the angle with
vertex o0,). Using the fact that for ¢,=m + 8,.,, 1l.e. on the boundary of
the shadow, fhe function m(B,_l, @_) has a pole with an easily computed
residue, 1t can be shown that the sum u,.;+ u,, where u, is determined by
(5.4), is continuous along with its first derivatives for o, =7 + B,.,. 1t
follows from this that y,_,+ u, 1is a solutlon of Equation %1.1) in a region
containing the radius ¢,=m + 8,., -

The sum v,.,+ u, may be lnvestlgated similarly on the radius drawn from
the point of juncture of the wave 1y, and the front of the reflected wave
Uy-,s if the latter exists. Here the followlng expression 1s used for the
wave v,., obtained by reflection of the wave u,., from one side of the

angle 0, . ; . - * =
22 vy (Tey Felp Pan) = o, =22 — @,  (5.6)

== \ 'D.s. qu~1 (130 + Wos v« - (Ps_l ‘!" L'Tlgw.l) k ((Ps..l - + hx 1‘“”]5*1) d']o = dns—l
where o 1s the polar angle giving the direction of the straight llane on
which the reflection takes place; 7¥ ¥ , are polar coordinates with pole
at the point 0¥ ,, which is the point symmetrical to 0,., with respect to
this line; x 1s the reflection coefficient of (3.6); and h 1is the inte-
ger so that 0 <@, ;, — o -+ hrw <. To prove Equation (5.6) it is sufficicnt
to verify that the sum u,-,+ v,., satlsfies the boundary condition (2.1).

If the polygon on which diffraction occurs 1s not convex, there may exist
waves which experilence reflection from the sides of the polygon after a cer-
tain number of diffractions at 1ts vertices and are then once again diffrac-
ted at vertices etc. Each such wave iS agaln expressed by {5.1) and (5.%),
but now

qq (Bo, LR Bs—-l’ ch) =a (“ + BO) my (BO’ s *+" Bl) L] m] (85—17 “+B]) x
Xk(B; —a; + b)) my,, Qa; — By, o+ Bisp « - - Mg (By_13 99 (5.7)

Thus, if a ray undergoes a reflection from a straight line which 1s char-~
acterized by the polar angle o, on the path between vertices ¢, and 0,,,,
then the expression for g, is modified by the factorX (B; —a; + A;n), .where
x(g) is the reflection coefflcient of (3.6); n, 1is the integer such that

ij~aj~+-hft<:1t; and in the factor which follows (in the present case
m,ey Js the firsc argument g8, 1s replaced by 20,~ 8,, i.e. by & polar angle
o% the direction from which %he reflected ray approaches. In the presence
of several reflections, a corresponding number of factors k 1s appended.
The groof 1s carried out analogously to the proof of Equations (5.4) and

6. Investigation of the aiffracted wave, The coefficlents Ao (ryse,)
of the ray expansion (5.3) have a form
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Ao T g . Laﬁqu
= gp s AT S
T $j=g 7
Ps == (-Ro « . -Rs-lrs)l/z
A= ( L4 (]s L” L"qus
527 l+3P }J + 2 2’
j=0 OI< R

where @ and ¢, are the same as in (5.2), and g, and R, replace g, and
r, . For large n , Equations (5.3) and (5.2) for 4,, are unwieldy. It is
sometimes more convenient to obtain several of the leading nonzerc terms of
the series (5.3) by finding the expansions of the form (5.3) or {(6.2) (see

below)} successively for the waves u,,..., u,

.

Let the ray expansion (or several of 1ts leading terms) be known for the
wave Us_y (s > 1) hd
Us g (Tsogs Toors Psy) = 2 As-tn (Teoyy Po-r) faen (Tsy) (6.1)

n=g
According to Section 8 of [3], we may write

Uy = D F (Foy, faen (Toet)s Bn (@s-1)) (6.2)
n==_0
Here each term has the form 0
7 (—1)Ly; b (8)
(0 fm (%), B (8) = 2 ——;;,,—;rfmj (1) (6.3)

and 1s, therefore, a solution of the wave equations; the functions b, (g,_,)
are different in the various terms. The convergence of the series {6.2) in
the vicinity of the front 1s guaranteed by the assumption that

[ 0mbn /05 | << Cmlnld—m-n, 6>0 (6.4)

Diffraction of a wave of the form (6.3) at the vertex 0, results in a

wave of the form {4.1), and diffraction of the wave u,_, of the form {6.2)
in the wave
(e o]

Us = E F ("8’ Jasney, (Ts),

n=4

D )Ly Peb (- By_) My (By_y, @)
2 o k,il k:—‘l = (6.5)
2 2+l B

where [ = 0 1if the segment 0,.;0, does not lie on the boundary and (=1
if 1t does; m, 1s the same as in Section 5. The series (6,5) 1s convergent
under the condition (6.%) near the wave front and an ineguality similar to
(6.4) is valid for it also. Thus, 1f the incident wave 1y, is written in
the form (6.2) for & = 1, and if the estimate (6.4) holds »,{g,), then
Uy s-ves U, can be found successively in accordance with (6.5). The trans-
formation from the expression of y, in the form (6.5) to a ray expansion
may be effected with the aid of Egquation {6.3).

If the segment 0,.,0, lies on the boundary and the boundary conditlon
there 1is speclified to be y = O or the condition (2.1) for ¢ # O , the
first term of the sum in {6.5) vanishes. Let us find the subsequent terms.
The boundary condition of 0,.,0, can be written as
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du a  Ou ou a Ou
T . (@53 =7+ B, ), a : o, (@ = Bs-y)
Here ¢ = l/c or a =—1/¢ ; in the case of the boundary condition y=0
we have o = 0 . According fo (2.4) we have on 0,_,0, the following rela-
tions for the functions b = by (0 + Bs-y) and m = mg (Ps-1, Ps)

b=0,0b" = 2ab', b1V = 4o (" —b'),. .,
m=0,m = —2am',mV =4a (m" —m”),.... (6.6)
where all derlvatives are taken with respect to 8,.,. Therefore,
Lepm = 0, Lbm = 2b’'m’, Lpm = 4b"'m’' + 4b'm”" + (5 — 24a®) b'm’, . . .
in Equation (6.5) and the ray expansion of the diffracted wave begins as

Foltones W@ 4B ) m B
2Hsi/1’rs'/’

Thus, 1f the leading term of the ray expansion of the incident wave y,
contains fo(-r) ,» the ray expansion for the diffracted wave contains
fo+s (T)y, Wwhere & 1s the number of vertices 0,,..., 0, encountered on
the path of the ray and p 1s the number of segments ¢,_,0, of the path of
the ray which lie on a boundary having the boundary condition uy = O or
(2.1) for ¢ # O . This means that the smoothness of onset of the wave u,
is greater by P + e unlts than for the incldent wave u, ; 1l.e. if
Ug ~ by T* near the front, then uUs —~ byTM+P+s,

) Jaes, (Ts) 4 . ..

7. 8teady-state diffraction., For a steady-state oscillation of the form
ult,z, y) = v(z, y) " one usually obtains the high-frequency asymptotic
expression (w ~ =) by setting 1, (1)= (i)™ ¢!" in the ray expansion for y.
In the case of diffraction being considered here, the leading term of the
asymptotic expansion of the wave y, (for w ~ m5 acquires an amplitude fac-
tor of -P-'%s and a phase lag of (P + ¥s)n/2 relative to u,, where p
1s the number of segments of the path of the ray which lle on a boundary
having elther the boundary condition v = O or the impedence boundary con-
dition 0v/8n = icov, ¢ 50,

Thus, for the problems of diffraction by polygons, formulated at the
beginning of Section 5, the method which has been explained allows us to
write out 1n a finite number of operations the exact expressions for the
coefficlents of an asymptotic expansion of the solution v(x,y) in powers
of 1/w up to l/w“ y for any fixed 5 . To do this, 1t 1is sufficient to
examine all optical paths 0,0,,...., 0, for which the ray expansion of t’
diffracted wave starts with & berm fm (), m=p-+1/,s<n There are
obviously, a finite number of such paths.

In case of a steady-state oscillation the diffracted wave can also be
represented in the form of an integral analogous to (5.4%). If u(t, p, 8)
is a solution of Equation (1.1) u, = Au, then the funection

o0
Ve, 0= eyt e, 0) ar 7.0
—00
satisfies the equation AV -+ 0 =0 (it is assumed that the derivatives
of u fall off sufficiently rapidly for ¢ - & «» 8o that it is sossible

to differentiate under the integral sign and to integrate by parts). Equa-
tions (7.1) and (1.8) give us
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Vo (p, 8) = Vg_n S}o gt coshiy (g 1 ) an (7.2)

for the wave (1.5) to (1.7).

If a EE(Sn)‘Vﬂ uy coincides with the wave (4.5) coming from an instantane~-
ously acting source and e"“P% = .‘I/Jeuﬁ}yJ2)(mr) is a wave from a point

source of intensity e'®'; , where H,? is a Hankel function.
If, however, a (B) = m (B, 9), where the function m 1s the same as in
(4.7), then e““Vo is the diffracted wave corresonding to the plane wave

o @t ia(xcos B+ysinB) incident on a wedge, The change of variable integration
6+ 4n = y reduces (7.2) to Sommerfeld's integral (the difference in paths
of integration 1s related to that fact that Sommerfeld's integral gives the
entire fleld consisting of the diffracted wave (7.2), the incident and
reflected waves).

For the multiply diffracted wave (5.4), Equation (7.1) gives us
V, (rp@,) = 270 (2m)~te+ 18 S .. S % dn,. . . dn, (7.3)
z = Ryeosnmy + ... + Rs_lcosh-ns_l + rfoshns

where ¢, 1s the same as in (5.4) and the integrationon n,,..., n, is car-
ried out from — o to + « . It can be proved that the integral converges
and admits two differentiations. Therefore, V, 1s the wave obtained by
diffraction of the wave (7.2) at the vertices 0,,..., 0, .
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