EXACT EXPRESSIONS FOR A MULIIPLY DIFFRACTED WAVE WITH A CIRCULAR FRONT

(TOOMNES VYRAJBEsith DHIA myococratwo DIFRAGIROVANAOI VOINY S KRUCOVYM FRONICW)

PMM Vol.28, NQ 6, 1964, pp.1083-1091
A.F.FILIPPOV
(Moscow)
(Received April 27, 1964)

Abstract

An exact expression in the form of a multiple integral is obtained for an acoustic wave which has a circular or straight front and which undergoes diffraction at the vertices of a polygon. Formulas are also obtained for any term of the geometric-acoustical expansion of this wave near 1 ts front.

1. Vargous ropresentations of a wave having a front in the form of a airoular arc. In the region $t \geqslant t_{0} \geqslant 0,0<\rho<\infty, \theta_{1}<\theta<\theta_{2}(\rho, \theta$ are polar coordinates), we consider the solution $u(t, \rho, \theta)$ of the wave equation

$$
\begin{equation*}
u_{t t}=u_{\rho \rho}+\rho^{-1} u_{\rho}+\rho^{-2} u_{\theta \theta} \tag{1.1}
\end{equation*}
$$

which is equal to zero for $\rho>t$ (1.e. ahead of the front) and which is homogeneous of degree zero in t and ρ. A wave from a point source of constant intensity which is cut in at $t=0$ and the diffracted wave in problems of diffraction of a plane wave by a wedge [1 and 2] are examples of solutions of this type. According to [1], such a solution is representable, for $\rho<t$, in the form

$$
\begin{equation*}
u=\operatorname{Re} U(\zeta), \quad \zeta=\left[\frac{t}{\rho}-\left(\frac{t^{2}}{\rho^{2}}-1\right)^{1 / 2}\right] e^{i \theta} \tag{1.2}
\end{equation*}
$$

where $U(G)$ is an analytic function of the complex variable 6 which is purely imaginary on the arc $\zeta=e^{i \theta}, \theta_{1}<\theta<\theta_{2}$. Conversely, for any such function $U(6)$, Equation (1.2) provides a solution of Equation (1.1) which possesses the properties indicated. Setting

$$
\begin{equation*}
\zeta=e^{i(\beta+i n)}, \quad U(\zeta)-U_{1}(\theta \mid i \eta) \tag{1.3}
\end{equation*}
$$

in (1.2) and taking into consideration that $u=0$ for $p=t$ (i.e. for $\eta=0$), we obtain that $u=\operatorname{Re} \Pi_{1}(\theta+i \eta)$ is an odd function of η and that

$$
\begin{equation*}
u=\frac{U_{1}(\theta+i \eta)-U_{1}(\theta-i \eta)}{2}=i \eta U_{1}^{\prime}(\theta)-\frac{i \eta^{3}}{3!} U_{1}^{\prime \prime \prime}(\theta)+\ldots \tag{1.4}
\end{equation*}
$$

Using Equations (1.2) and (1.3) and setting $\tau=t-p$, we obtain

$$
\eta=\int_{i}^{t / \rho} \frac{d z}{\sqrt{2^{2}-1}}=\int_{0}^{\tau / \rho}\left[2 s\left(1+\frac{s}{2}\right)\right]^{-1 / 2} d s=\left(\frac{2 \tau}{\rho}\right)^{1 / 2}+\sum_{j=1}^{\infty} c_{j}\left(\frac{\tau}{\rho}\right)^{j+1 / 2}
$$

The equations which have been written imply that

$$
\begin{equation*}
u=\sum_{j=0}^{\infty} \frac{a_{j}(\theta)}{p^{j+1 / 2}} f_{j}(\tau) \tag{1.5}
\end{equation*}
$$

$f_{j}(\tau)=\tau^{j+1 / 2} / \Gamma\left(j+{ }^{3} / 2\right), \quad a_{0}(\theta)=i \sqrt{\pi / 2} U_{1}{ }^{\prime}(\theta)=-\sqrt{\pi / 2} e^{i \theta} U^{\prime}\left(e^{i \theta}\right)$
According to Section 8 of the paper [3] the series (1.5) must have the same form as the series (8.2) of [3]. Therefore, (the $L_{2 j}{ }^{\theta} a(\theta)$ are the same as in [3])

$$
\begin{equation*}
a_{j}(\theta)=\frac{(-1)^{j}}{2^{j}!} L_{2 j}{ }^{\theta} a(\theta), \quad a(\theta)=a_{0}(\theta) \tag{1.7}
\end{equation*}
$$

The series (1.5) gives the geometric-acoustical expansion (ray expansion) of the wave of form (1.4).

It follows from (1.4) to (1.7) that for an analytic function $a(\theta+i \eta)$ which is real for $\eta=0$, we have

$$
\begin{equation*}
\sum_{j=0}^{\infty} \frac{(-1)^{j} L_{2 j}{ }^{\theta} a(\theta)}{2^{j}!!\rho^{j+1 / 2}} \frac{\tau^{j-1 / 2}}{\Gamma(j+1 / 2)}=\frac{a(\theta+i \eta)+a(\theta-i \eta)}{\sqrt{2 \pi}} \frac{\partial \eta}{\partial \tau} \tag{1.8}
\end{equation*}
$$

It is easy to see that this equation is also valid for any analytic function $a(\theta+i \eta)$.
2. Investication of the molution noar the boundary. In the sector $\theta_{1}<\theta<\theta_{\mathrm{g}}$ let us consider the solution (1.2) of Equation (1.4) which satisfies the boundary condition

$$
\begin{equation*}
\partial u / \partial n=c \partial u / \partial t \quad(c=\text { const }, \quad 0 \leqslant c \leqslant \infty) \tag{2.1}
\end{equation*}
$$

for $\theta=\theta_{1}$.
Here $\partial u / \partial n=\rho^{-1} \partial u / \partial \theta$ in the inner normal derivative to the boundary $\theta=\theta_{1}$ of the sector. In particular, for $0=0$ the condition (2.1) reduces to the condition $\partial u / \partial n=0$ and for $0=\infty$ to the condition $\partial u / \partial t=0$, 1.e. to the condition $u=0$, since for $t \leqslant \rho$ we have $u=0$ for the solution (1.2). For a ateady-state oscillation $u=v e^{i \omega t}$, condition (2.1) reduces to Leontovich's well-known condition $\partial v / \partial n=i c \omega v$.

For the solution (1.5), the boundary condition assumes the form

$$
\begin{equation*}
\operatorname{Re}(c+\sin i \eta) a\left(\theta_{1}+i \eta\right)=0 \quad \text { for } \eta \geqslant 0 \tag{2.2}
\end{equation*}
$$

Therefore, the function $a(\theta+i \eta)$ is continued analytically into the region $2 \theta_{1}-\theta_{2}<\theta<\theta_{1}$, in accordance with Equation

$$
\left[c+\sin \left(\theta-\theta_{1}+i \eta\right)\right] a(\theta+i \eta) \equiv \psi(\theta+i \eta)
$$

$$
\psi(\theta+i \eta)=-\operatorname{Re} \psi\left(2 \theta_{1}-\theta+i \eta\right)+i \operatorname{Im} \psi\left(2 \theta_{1}-\theta+i \eta\right)
$$

It follows from this that $(c+\sin \varphi) a\left(\theta_{1}+\varphi\right)$ is an odd function of φ

$$
\begin{equation*}
(c+\sin \varphi) a\left(\theta_{1}+\varphi\right) \equiv-(c-\sin \varphi) a\left(\theta_{1}-\varphi\right), \quad \varphi=\theta-\theta_{1} \tag{2.3}
\end{equation*}
$$

Therefore, in the case of condition (2.1) for $\theta=\theta_{1}(a \neq 0)$ all derivatives $a^{(2 n)}\left(\theta_{1}\right)$ are expressed in terms of $a^{\prime}, a^{\prime \prime}, \ldots a^{(a \mathrm{a}-1)}$
$a\left(\theta_{1}\right)=0, \quad a^{\prime \prime}\left(\theta_{1}\right)=-2 c^{-1} a^{\prime}\left(\theta_{1}\right), \quad a^{\text {IV }}\left(\theta_{1}\right)=4 c^{-1}\left(a^{\prime}\left(\theta_{1}\right)-a^{\prime \prime \prime}\left(\theta_{1}\right)\right), \ldots$
3. Resiection from a boundary. In the region $\nu>0$ let the wave $u_{1}=\operatorname{Re} V\left(G_{1}\right)$ propagate, the wave having a circular front with center at (x_{1}, y_{1}), $y_{1}>0$, and let the condition (2.1) be stipulated on the boundary $y=0$, where $\partial / \partial n=\partial / \partial y$. We shall seek the reflected wave by the method of Sobolev [1] in the form $v=\operatorname{Re} V\left(G_{R}\right)$, where
$\zeta_{k}=\left[\frac{t}{\rho_{k}}-\left(\frac{t^{2}}{\rho_{k}^{2}}-1\right)^{1 / 2}\right] e^{i \theta_{k}}, \quad x-x_{1}=\rho_{k} \cos \theta_{k}, \quad(-1)^{k} y+y_{1}=\rho_{k} \sin \theta_{k}$
Then $\sigma_{1}=\sigma_{8}$ for $y=0$. Setting $u=u_{1}+v$ in (2.1), we obtain

$$
\begin{equation*}
\operatorname{Re}\left[\left(V^{\prime}-U^{\prime}\right) i\left(1-\zeta^{2}\right)+2 c \zeta\left(V^{\prime}+U^{\prime}\right)\right]=0 \quad \text { for } \operatorname{Im} \zeta>0 \tag{3.1}
\end{equation*}
$$

Therefore, the expression in square brackets can only be equal to $B t$, where B is a real constant, Noting that for $\zeta=e^{i \theta}, U$ and V are purely imaginary quantities (see Section 1), we find $B=0$ and

$$
\begin{equation*}
V^{\prime}(\zeta)=\frac{i\left(1-\zeta^{2}\right)-2 c \zeta}{i\left(1-\zeta^{2}\right)+2 c \zeta} U^{\prime}(\zeta) \tag{3.2}
\end{equation*}
$$

Taking any 6_{0} such that $\left|6_{0}\right|=1$ (the arbitrariness in the choice of arg G_{0} does not affect the quantity v), we may write

$$
\begin{equation*}
V(\zeta)=\int_{\zeta_{0}}^{\zeta} V^{\prime}(z) d z, \quad v=\operatorname{Re} V\left(\zeta_{2}\right) \tag{3.3}
\end{equation*}
$$

In particular, if u_{1} is a wave emanating from a source of unit intensity which starts at the instant $t=0$ at the point $\left(x_{1}, y_{1}\right)$, then

$$
u_{1}=\frac{1}{2 \pi} \ln \left[\frac{t}{\rho_{1}}+\left(\frac{t^{2}}{\rho_{1}^{2}}-1\right)^{1 / 2}\right], \quad U\left(\zeta_{1}\right)=-\frac{1}{2 \pi} \ln \zeta_{1}
$$

and we obtain for the reflected wave $v=\operatorname{Re} v\left(\zeta_{2}\right)$, by setting $0=\cos \gamma$,

$$
\begin{equation*}
V(\zeta)=-\frac{1}{2 \pi}\left(\ln \zeta+2 i \cot \gamma \ln \frac{\zeta e^{i \gamma}+i}{\zeta+i e^{i \gamma}}\right) \tag{3.4}
\end{equation*}
$$

Let us now write out the ray expansion for the reflected wave. The ray expansion for the incident wave $u_{1}=\operatorname{Re} v\left(G_{1}\right)$ has the form (1.5) to (1.7), where $u, 6, p$ and θ should be replaced by u_{1}, G_{1}, ρ_{1} and θ_{1}. The reflected wave $v=\operatorname{Re} V\left(\zeta_{2}\right)$ is obtained from the incident wave by substituting V and G_{2} for V and G_{1}. Therefore, the ray expansion for the reflected wave has the form

$$
\begin{equation*}
v=\sum_{j=0}^{\infty} \frac{(-1)^{j} L_{2 j} b\left(\theta_{2}\right)}{2^{j}!\rho_{2}^{j+1 / 2}} f_{j}(\tau), \quad b\left(\theta_{2}\right)=-\sqrt{\frac{\pi}{2}} e^{i \theta_{2} V^{\prime}}\left(e^{i \theta_{2}}\right) \tag{3.5}
\end{equation*}
$$

From (3.5), (3.2) and (1.6) we obtain
$b(\theta)=k(\theta) a(\theta)$,
$k(\theta)=\frac{\sin \theta-c}{\sin \theta+c}$
4. Difrraotion of a we with oiroular front. Let the wave (1.2) with a citcular front and center at the point 0_{0} undergo diffraction by angle with vertex O_{1}. In this Section it w111 be assumed that the point O_{0} does not lie on a side of the angle. Boundary conditions of the type (2.1) are specified on the sides of the angle. The values of the coefficients 0 are not necessarily the same on the two sides of the angle. Let (ρ, θ) and (r, φ) be polar coordinates with poles O_{0} and O_{1} and parallel polar axes; for the point O_{1}, we have $r=R, \varphi=\beta$.

According to Section 2 of [3], the solution of this problem is the sum of the incident, reflected and refracted waves. A method of forming the reflected wave has been explained above. The diffracted wave was obtained in [3] in the form of a ray expansion, the series (8.4), which converges near the front. We shall express the sum of this series in the form of an integral. To this end, we write the series (8.4) of [3] in the following form, taking into account the form of the function f, in (1.5), (1.6) and using the notation $a(\pi+\beta) m(\varphi, \beta)=q(\beta, \varphi)$

$$
\begin{equation*}
w=\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(-1)^{j+k} L_{2 k}{ }^{\beta} L_{2 j}{ }^{\varphi} q(\beta, \varphi)}{2^{j+k}{ }_{j}!k!R^{k+1 / 2 r} r^{j+1 / 2}} \frac{\tau^{j+k+1}}{\Gamma^{1}(j+k+2)} \tag{4.1}
\end{equation*}
$$

It follows from (4.1) that

$$
\begin{equation*}
\frac{\partial w}{\partial t}=\int_{0}^{=} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(-1)^{j+k} L_{2 k}{ }^{\beta} L_{2 j}{ }^{\varphi} q(\beta, \varphi)}{2^{j+k} j!k!R^{k+1 / 2} r^{j+1 / 2}} \frac{\chi^{j-1 / 2}(\tau-\chi)^{k-1 / 2}}{\Gamma^{1}(j-1 / 1 / 2) \Gamma(k+1 / 2)} d \chi \tag{4.2}
\end{equation*}
$$

Applying Formula (1.8) to the series in (4.2) twice, we find

$$
\begin{gather*}
\frac{\partial w}{\partial t}=\frac{1}{2 \pi} \int_{0}^{\tau} \frac{q^{*}\left(\beta+i \eta_{0}, \varphi+i \eta_{1}\right) d \chi}{\sqrt{(R+\tau-\chi)^{2}-R^{2}} \sqrt{(r+\chi)^{2}-r^{2}}} \tag{4.3}\\
\eta_{0}=\eta\left(\frac{\tau-\chi}{R}\right), \quad \eta_{1}=\eta\left(\frac{\chi}{r}\right)=\ln \left[1+\frac{\chi}{r}+\left(\left(1+\frac{\chi}{r}\right)^{2}-1\right)^{1^{2}}\right] \\
q^{*}\left(\beta+i \eta_{0}, \varphi+i \eta_{1}\right)=\Sigma q\left(\beta \pm i \eta_{0}, \varphi \pm i \eta_{1}\right)
\end{gather*}
$$

(the sum is taken over all four combinations of the \pm signs).
Either from Equation (4.3) or directly from (4.1) we can find that

$$
\begin{equation*}
w=\frac{1}{2 \pi} \iint_{D,} q\left(\beta+i \eta_{0}, \varphi+i \eta_{1}\right) d \eta_{0} d \boldsymbol{\eta}_{1} \tag{4.4}
\end{equation*}
$$

where D_{2} is the region $R\left(\cosh \eta_{0}-1\right)+r\left(\cosh \eta_{1}-1\right)<\tau$.
We note that the function $w^{*}=\partial w / \partial t$ is the diffracted wave for the incident wave $u^{*}=\partial u / \partial t$, where u is a wave of the form (1.2). An exampie of this type is the wave u^{*} due to an instantaneously acting source (i.e. the source is cut in and then immediately afterward cut out)

$$
\begin{equation*}
u^{*}=\frac{1}{2 \pi \sqrt{t^{2}-p^{2}}} \quad(t>p), \quad u^{*}=0 \quad(t<\rho) \tag{4.5}
\end{equation*}
$$

Here

$$
U(\zeta)=-(2 \pi)^{-1} \ln \zeta, \quad a(\theta)=(8 \pi)^{-1 / 2}
$$

In this way the right-hand side of (4.3) with $q(\beta, \varphi)=(8 \pi)^{-1 / 2} m(\varphi, \beta)$ gives the solution w^{*} of the plane problem of diffraction of the wave (4.5) due to the source by a wedge under the boundary conditions (2.1).

The function $m(\varphi, \beta)$ is determined in Section 8 of [3]. A comparison of Equation (8.3) of [3] with Equations (1.4) to (1.7) of this paper results in

$$
\begin{equation*}
m(\varphi, \beta)=i \sqrt{\pi / 2} U_{0}^{\prime}(\varphi), \quad \operatorname{Re} U_{0}(\varphi+i \eta)=w^{\circ} \tag{4.6}
\end{equation*}
$$

where w° is the diffracted wave (for the same wedge) corresponding to the incident plane wave (3.1) of [3].

In the case when Equation (1.1) is considered in the sector $\theta_{1}<\varphi<\theta_{2}$, with the boundary condition $u=0$ for $\varphi=\theta_{1}$ and $\varphi=\theta_{2}$, the function w° and U_{0} can be found by the methods set forth in [1]. Then

$$
\begin{gather*}
m(\varphi, \beta)=m(\beta, \varphi)=\frac{\sqrt{\pi / 2}}{2\left(\theta_{2}-\theta_{1}\right)} \sum_{k=1}^{4}(-1)^{k} \cot \frac{\pi\left(\varphi_{1}-\gamma_{k}\right)}{2\left(\theta_{2}-\theta_{1}\right)} \tag{4.7}\\
\gamma_{1}=-\gamma_{3}=\pi-\beta_{1}, \quad \gamma_{2}=-\gamma_{4}=\pi+\beta_{1}, \quad \varphi_{1}=\varphi-\theta_{1}, \quad \beta_{1}=\beta-\theta_{1}
\end{gather*}
$$

In the case of the boundary condition $\partial u / \partial n=0$, one need only change the signs of the first and fourth terms of the sum in (4.7).

For the case of the boundary condition (2.1), $m(\varphi, \beta)$ is determined from (4.6), where

$$
U_{0}^{\prime}(\varphi)=\left.\frac{v \sin v \varphi}{\cos ^{2} v \varphi} \frac{d W}{d \zeta}\right|_{\zeta=\sec v \varphi} \quad\left(v=\frac{\pi}{\psi}\right)
$$

If the wedge at which diffraction takes place is situated the same way as in [2], then $d W / d \zeta$ is determined by Equation (11) of [2] for $\gamma=\pi-\beta$; here * and 6 are the same as in [2].

We note that we always have $m(\varphi, \beta)=m(\beta, \varphi)$ (Expression (4.1) should not be altered if the positions of the source and the point of observation are interchanged).
5. Multiple diffraotion. Let the wave u_{0} having a front in the form of a circular arc with center O_{0} be diffracted by an angle with vertex O_{1} and straight sides on which boundary conditions of the form (2.1) are specified. The diffracted wave u_{1} is one again diffracted by an angle with vertex O_{2}, and so on. The values of the coefficient c of (2.1) may be different on the various sides of the angles; the values $c=0$ and $c=\infty$ will also be allowable. An expression is sought for the wave u, which is obtained after diffraction at the vertices $O_{1}, \ldots, O_{\text {, (}}$ (the same vertex may appear several times, with different subscripts, in the sequence O_{1}, \ldots, O_{1}).

This formulation includes the problems of diffraction by a slit, a segment, a polygon, or by several polygons arbitrarily situated in the plane (except in cases when a point of junction of wave fronts strikes a vertex). In the case of diffraction by a silt, representations of diffracted waves by multiple integrals were obtained in [4]. In the case of diffraction by a polygon, an approximate representation of the diffracted waves near the front only was obtained in [5].

Let r_{k}, φ_{k} be polar coordinates with pole $0_{k}(k=0,1, \ldots, s)$ and parallel polar axes. Each point O_{k+1} has the coordinates $\beta_{k}, \beta_{k}+\pi$ in
the systen with pole O_{k}. We denote by $u_{1}\left(\tau_{d}, r_{1}, \varphi_{0}\right)$ the wave with center 0_{0} which is obtained as a result of diffraction of the wave u_{0} by the angles O_{1}, \ldots, O_{1}; here $\tau_{s} \equiv t-R_{0}-\ldots-R_{s-1}-r_{s}$. Let $\tau_{0}=0$ be the front of the incident wave u_{0} and let $u_{0}=0$ ahead of the front. Then $\tau_{s}=0$ is the front of the wave u_{1}, and for $\tau_{1}<0$ we have $u_{1}=0$. Let the incident wave u_{0} be represented by Equations (1.5) to (1.7) for $\theta=\varphi_{0}$, $\rho=r_{0}, \tau=\tau_{0}$. Then the wave u_{1} is represented by the ray expansion (8.4) of [3] near the front, where $\beta, \varphi, r, R, \tau$ are replaced by $\beta_{0}, \varphi_{1}, r_{1}, R_{0}$, τ_{1}. By transforming this series to a form analogous to (4.1) we obtain a representation of the wave u_{1} in the form of a sum of waves each of which is expressed by a series of the form (1.5), but with different $a_{0}(\theta)$ and $f_{j}(\tau)$. After diffraction at the vertex O_{2}, each of these waves again provides a wave of the form (4.1). By adding these latter we obtain a wave u_{2}. Considering diffraction of the wave u_{3} at the vertex O_{3}, and then at the vertices $0_{4}, \ldots, 0_{4}$, we obtain analogously (for $l=0$)

$$
\begin{align*}
& u_{s}=\sum_{j_{0}=0}^{\infty} \ldots \sum_{j_{s}=0}^{\infty} b_{j_{0} \ldots j_{s}} f_{j_{0}+\ldots+j_{s}+s / 2}\left(\tau_{s}\right) \tag{5.1}\\
& b_{j_{j} \ldots j_{s}}=\frac{(-1)^{j_{0}+\ldots+j^{\prime}} L_{L_{2 j} j_{0}}^{\beta_{0}} \ldots L_{2 j_{s-1}}^{\beta_{s} L_{2} L_{2} \varphi_{s}} q_{s}}{2^{j_{0}+\ldots+j_{s}+1} j_{0}!\ldots j_{s}!R_{0}^{j_{0}+1 / 2}} \ldots R_{s-1}^{j_{s-1}^{-1 / 2}} r_{s}{ }^{j_{s}+1 / 2} \tag{5.2}
\end{align*}
$$

$q_{s}=q_{s}\left(\beta_{0}, \ldots, \beta_{s-1}, \varphi_{s}\right)=$

$$
=a\left(\pi+\boldsymbol{\beta}_{0}\right) m_{1}\left(\boldsymbol{\beta}_{0}, \pi+\boldsymbol{\beta}_{1}\right) \ldots m_{s-1}\left(\boldsymbol{\beta}_{s-2}, \pi+\beta_{s-1}\right) m_{s}\left(\boldsymbol{\beta}_{s-1}, \varphi_{s}\right)
$$

Each function $m_{1}\left(\beta_{1-1}, \varphi_{1}\right)$ is determined analogously to $m(\beta, \varphi)$ in accordance with Equation (4.6), where w° is now the wave which arises upon diffraction of a plane wave (the same as in (4.6)) moving from O_{1-1} to O_{1} at the vertex a_{1}. The series (5.1) is absolutely and uniformly convergent in the vicinity of the front of the wave $u_{\text {, }}$. The width of the region of convergence decreases to zero as we approach points of junction of the wave fronts of u_{1} and u_{s-1}. Grouping the terms of the series, we obtain the ray expansion of the wave u_{0}

$$
\begin{equation*}
u_{s}=\sum_{n=0}^{\infty} A_{s n}\left(r_{s}, \varphi_{s}\right) f_{n+s / 2}\left(\tau_{s}\right), \quad A_{s n}\left(r_{s}, \varphi_{s}\right)=\sum_{j_{0}+\ldots+j_{s}=n} b_{j_{0} \ldots j_{s}} \tag{5.3}
\end{equation*}
$$

By transforming the series (5.1) using the method of Section 4, we obtain

$$
\begin{align*}
& u_{s}= \frac{1}{2^{l}(2 \pi)^{(s+1) / 2}} \int \ldots \int_{D_{s+1:}^{s}} \ldots q_{8}\left(\beta_{0}+i \eta_{0}, \ldots, \beta_{s-1}+i \eta_{s-1}, \varphi_{s}+i \eta_{s}\right) d \eta_{0} \ldots d \eta_{s} \\
& \text { The region of integration } D_{s+1} \text { is determined by the inequality } \\
& R_{n}\left(\cos l \eta_{0}-1\right)+\ldots+R_{s-1}\left(\cosh \eta_{s-1}-1\right)+r_{s}\left(\cosh \eta_{s}-1\right)<\tau_{s}(5.5) \tag{5.5}
\end{align*}
$$

It is also possible to represent $\partial u_{0} / \partial t$ in the form of an s-fold integral, analogously to (4.3).

Equations (5.1) to (5.4) which have been derived, and also Equation (8.4) of [3], are valid for the case when none of the segments $O_{0} O_{1}, O_{1} O_{2}, \ldots, O_{s-1} O_{s}$ which constitute the path of a ray up to the vertex 0 . lies on the boundary.

In the case when l of them lie on the boundary, the factor 2^{-l} appears in these formulas. This happens of the folluwing reason. The wave u_{2}, for example, is caused by diffraction at the vertex O_{2} of the waves u_{1} and v_{1} simultaneously, the latter being obtained by reflection of u_{1} from the side of the angle O_{2} visible from the point O_{1}. If the segment $O_{1} O_{2}$ lies on the boundary, then, as can be shown, $v_{1}=u_{1}$ and only one-half of the wave obtained by diffraction at point O_{1} should be considered as the incident wave for the vertex O_{2}.

Equation (5.4), as also (4.3) and (4.4), is valid not only in the vicinity of the front, but also in the entire region occupied by the diffracted wave u_{i}, except for these values of φ_{0} for which the function $m_{0}\left(\beta_{2}-1, \varphi_{1}\right)$ has a singularity, i.e. except for the radil which connect the point 0 , with points of juncture of the wave front of u, and other fronts.

To prove this we note that near the front the function (5.4) coincides with (5.1). Therefore, it satisfles Equation (1.1) and the boundary condition (2.1) near the front. But, since it is analytic, (5.4) satisfies these everywhere except for the radil indicated above. It remains to prove by induction that the wave $u_{\text {, }}$ is precisely the wave which comes about as a result of diffraction of the wave u_{f-1} at the angle 0_{1}. Let the wave u_{f-1} formed by diffraction at the point 0_{1-1} be expressed by the formula obtained from (5.4) by substituting $8-1$ for s, and by $u_{0}=0$ in the shadow zone (a shadow can be caused by the presence of an obstacle, the angle with vertex 0,). Using the fact that for $\varphi_{d}=\pi+\beta_{1-1}, 1 . e$. on the boundary of the shadow, the function $m\left(\beta_{4}-1, \varphi_{1}\right)$ has a pole with an easily computed residue, $1 t$ can be shown that the sum $u_{t-1}+u_{4}$, where u_{3} is determined by (5.4), is continuous along with its first derivatives for $8=\pi+8,-1$. It foliows from this that $u_{t-1}+u_{1}$ is a solution of Equation (1.1) in a region containing the radius $\varphi_{s}=\pi+\beta_{1-1}$.

The sum $v_{1-1}+u_{\text {a }}$ may be investigated similarly on the radius drawn from the point of juncture of the wave u_{4} and the front of the reflected wave $v_{\text {a }}$, if the latter exists. Here the following expression is used for the wave v_{f-1} obtained by reflection of the wave u_{*-1} from one side of the angle O_{2}

$$
\begin{equation*}
2^{l}(2 \pi)^{s, 2} v_{s-1}\left(\tau_{s-1}, r_{s-1}^{*}, \varphi_{s-1}^{*}\right)=\quad\left(\varphi_{s-1}^{*}=2 \alpha-\varphi_{s-1}\right) \tag{5.6}
\end{equation*}
$$

$=\int \dot{\dot{D}_{s}} \cdot \int q_{s-1}\left(\beta_{0}+i \eta_{0} \ldots, \boldsymbol{\Psi}_{s-1}+i \eta_{s-1}\right) k\left(\varphi_{s-1}-\alpha+h \pi+i \eta_{s-1}\right) d \eta_{0} \ldots d \eta_{s, 1}$
where a is the polar angle giving the direction of the straight line on which the reflection takes place; $r_{1-1}^{*} \varphi_{i-1}^{*}$ are polar coordinates with pole at the point $0_{0}^{*}-1$, which is the point symmetrical to $0_{0}-1$ with respect to this iline; k is the reflection coefficient of (3.6); and h is the integer so that $0<\varphi_{s-1}-\alpha+h \pi<\pi$. To prove Equation (5.6) it 1 s sufficin nt to verify that the sum $u_{s-1}+v_{1-1}$ satisfies the boundary condition (2.1).

If the polygon on which diffraction occurs is not convex, there may exist waves which experience reflection from the sides of the polygon after a certain number of diffractions at its vertices and are then once again diffracted at vertices etc. Each such wave is again expressed by (5.1) and (5.4), but now

$$
\begin{gather*}
q_{s}\left(\beta_{0}, \ldots, \beta_{s-1}, \varphi_{\theta}\right)=a\left(\pi+\beta_{0}\right) m_{1}\left(\beta_{0}, \pi+\beta_{1}\right) \ldots m_{j}\left(\beta_{j-1}, \pi+\beta_{j}\right) \times \\
\quad \times k\left(\beta_{j}-\alpha_{j}+h_{j} \pi\right) m_{j+1}\left(2 \alpha_{j}-\beta_{j}, \pi+\beta_{j+1}\right) \ldots m_{s}\left(\beta_{s-1} ; \varphi_{s}\right) \tag{5.7}
\end{gather*}
$$

Thus, if a ray undergoes a reflection from a straight line which is characterized by the polar angle $\alpha_{\text {, }}$ on the path between vertices 0_{1} and 0_{1+1}, then the expression for $q_{\text {. }}$ is modifled by the factor $k\left(\beta_{j}-\alpha_{j}+h_{j} \pi\right)$, where $k(\theta)$ is the reflection coefficient of (3.6); h_{1} is the integer such that $0<\beta_{j}-\alpha_{j}+h_{j} \pi<\pi$; and in the factor which follows (in the present case m_{p+1}, the first argument β_{1} is replaced by $2 a_{1}-\beta_{1}$, 1.e. by a polar angle of the direction from which the reflected ray approaches. In the presence of several reflections, a corresponding number of factors is appended. The proof is carried out analogously to the proof of Equations (5.4) and (5.6).
6. Invantigation of the diffracted wave. The coefficients $A_{i}\left(r_{0}, \varphi_{1}\right)$
of the ray expansion (5.3) have a form
$A_{s 0}=\frac{q_{s}}{2^{I} P_{s}}, \quad A_{s 1}=-\frac{1}{2^{i+1} P_{s}} \sum_{j=0}^{s} \frac{L_{2}^{\beta_{j}} q_{s}}{R_{j}}$
$A_{s 2}=\frac{1}{2^{l+3 P_{s}}}\left(\sum_{j=0}^{s} \frac{L_{4}{ }^{\beta j} q_{s}}{R_{j}^{2}}+2 \sum_{0 \leqslant j<k \leqslant s} \frac{L_{2}^{\beta j} L_{2}{ }^{\beta k} q_{s}}{R_{j} R_{k}}\right)$

$$
p_{s}=\left(R_{0} \ldots R_{a-1} r_{s}\right)^{1 / s}
$$

 $r_{\text {. . For large }} n$, Equations (5.3) and (5.2) for $A_{\text {b }}$ are unwieldy. It is sometimes more convenient to obtain several of the leading nonzero terms of the series (5.3) by finding the expansions of the form (5.3) or (6.2) (see below) successively for the waves u_{1}, \ldots, u_{1}.

Let the ray expansion (or several of its leading terms) be known for the wave $u_{s-1}\left(s \geqslant \frac{1}{u_{s-1}}\left(\tau_{s-1}, r_{s-1}, \varphi_{s-1}\right)=\sum_{n=0}^{\infty} A_{s-1, n}\left(r_{s-1}, \varphi_{s-1}\right) f_{d i n}\left(\tau_{s-1}\right)\right.$

According to Section 8 of [3], we may write

$$
\begin{equation*}
u_{s-1}=\sum_{n=0}^{\infty} F\left(r_{s-1}, f_{d+n}\left(\tau_{s-1}\right), b_{n}\left(\varphi_{s-1}\right)\right) \tag{6.2}
\end{equation*}
$$

Here each term has the form

$$
\begin{equation*}
F\left(\rho, f_{m}(\tau), b(\theta)\right) \equiv \sum_{j=0}^{\infty} \frac{(-1)^{j} L_{2 j}{ }^{\theta} b(\theta)}{2^{j} l p^{j+1 / 2}} f_{m+j}(\tau) \tag{6.3}
\end{equation*}
$$

and 1 , therefore, a solution of the wave equations; the functions $b_{1}\left(\varphi_{4-1}\right)$ are different in the various terms. The convergence of the series (6.2) in the vicinity of the front is guaranteed by the assumption that

$$
\begin{equation*}
\left|\partial^{m} b_{n} / \partial \varphi_{s-1}^{m}\right| \leqslant C m!n!\delta^{-m-n}, \quad \delta>0 \tag{6.4}
\end{equation*}
$$

Diffraction of a wave of the form (6.3) at the vertex 0 , results in a wave of the form (4.1), and diffraction of the wave u_{s-1} of the form (6.2) in the wave
$u_{s}=\sum_{n=0}^{\infty} F\left(r_{s}, f_{d+n+1 / 2}\left(\tau_{s}\right), \quad \sum_{k=0}^{n} \frac{(-1)^{k} L_{2 k}{ }^{\beta_{s-1} b_{n-k}\left(\pi+\beta_{s-1}\right) m_{s}\left(\beta_{s-1}, \varphi_{s}\right)}}{2^{k+l_{k!}!R_{s-1}^{k+1 / 2}}}\right)$
where $i=0$ if the segment $0,-10$, does not lie on the boundary and $t=1$ if it does; m_{0} is the same as in Section 5. The series (6.5) is convergent under the condition (6.4) near the wave front and an inequality similar to (6.4) is valid for it also. Thus, if the incident wave u_{o} is written in the form (6.2) for $s=1$, and if the estimate (6.4) holds $b_{n}\left(\varphi_{0}\right)$, then $u_{1}, \ldots, u_{\text {, can }}$ be found successively in accordance with (6.5). The transformation from the expression of u, in the form (6.5) to a ray expansion may be effected with the aid of Equation (6.3).

If the segment $0_{4-1} 0$, lies on the boundary and the boundary condition there is specified to be $u=0$ or the condition (2.1) for $0 \neq 0$, the first term of the sum in (6.5) vanishes. Let us find the subsequent terms. The boundary condition of $0,-10$, can be written as

$$
\frac{\partial u}{\partial t}=-\frac{\alpha}{r_{s-1}} \frac{\partial u}{\partial \varphi_{s-1}} \quad\left(\varphi_{s-1}=\pi+\beta_{s-1}\right), \quad \frac{\partial u}{\partial t}=\frac{\alpha}{r_{s}} \frac{\partial u}{\partial \varphi_{s}} \quad\left(\varphi_{s}=\beta_{s-1}\right)
$$

Here $a=1 / c$ or $a=-1 / c$; in the case of the boundary condition $u=0$ we have $\alpha=0$. According to (2.4) we have on $0,-10_{4}$ the following relations for the functions $b=b_{n-k}\left(\pi+\beta_{s-1}\right)$ and $m=m_{s}\left(\beta_{s-1}, \varphi_{s}\right)$:

$$
\begin{gather*}
b=0, b^{\prime \prime}=2 \alpha b^{\prime}, b^{\mathrm{IV}}=4 \alpha\left(b^{\prime \prime \prime}-b^{\prime}\right), \ldots \\
m=0, m^{\prime \prime}=-2 \alpha m^{\prime}, m^{\mathrm{IV}}=4 \alpha\left(m^{\prime}-m^{\prime \prime \prime}\right), \ldots \tag{6.6}
\end{gather*}
$$

where all derivatives are taken with respect to β_{1-1}. Therefore, $L_{0} b m=0, \quad L_{2} b m=2 b^{\prime} m^{\prime}, \quad L_{4} b m=4 b^{\prime \prime \prime} m^{\prime}+4 b^{\prime} m^{\prime \prime \prime}+\left(5-24 \alpha^{2}\right) b^{\prime} m^{\prime}, \ldots$ in Equation (6.5) and the ray expansion of the diffracted wave begins as follows:

$$
u_{s}=-\frac{b_{0}^{\prime}\left(\pi+\beta_{s-1}\right) m_{s}^{\prime}\left(\beta_{s-1}, \varphi_{s}\right)}{2 R_{s-1}^{3 / 1} r_{s}^{1 / 2}} f_{d+^{3} / 2}\left(\tau_{s}\right) \nvdash \ldots
$$

Thus, if the leading term of the ray expansion of the incident wave u_{0} contains $f_{0}(\tau)$, the ray expansion for the diffracted wave contains $f_{p+1 / s^{s}}(\tau)$, where s is the number of vertices O_{1}, \ldots, O_{2} encountered on the path of the ray and p is the number of segments $O_{k-1} O_{k}$ of the path of the ray which lie on a boundary having the boundary condition $u=0$ or (2.1) for $0 \neq 0$. This means that the smoothness of onset of the wave u_{0} is greater by $p+\frac{1}{2} 8$ units than for the incident wave $u_{0} ;$ i.e. if $u_{0} \sim b_{0} T^{2}$ near the front, then $u_{s} \sim b_{s} \tau^{m+p+1 / 2^{s}}$.
7. Standy-atata dirfraction. For a steady-state oscillation of the form $u(t, x, y)=v(x, y) e^{i \omega t}$ one usually obtains the high-frequency asymptotic expression $(\omega-\infty)$ by setting $f_{m}(\tau)=(i \omega)^{-m} e^{i \omega \tau}$ in the ray expansion for u. In the case of diffraction being considered here, the leading term of the asymptotic expansion of the wave u_{0} (for $\omega \rightarrow \infty$) acquires an amplitude factor of $\omega^{-p-1 / 2 s}$ and a phase lag of $\left(p+\frac{1}{6} s\right) \pi / 2$ relative to u_{0}, where p is the number of segments of the path of the ray which lie on a boundary having either the boundary condition $v=0$ or the impedence boundery condition $\partial v / \partial n=i c \omega v, c \neq 0$.

Thus, for the problems of diffraction by polygons, formulated at the beginning of Section 5, the method which has been explained allows us to write out in a finite number of operations the exact expressions for the coerricients or an asymptotic expansion or the solution $v(x, y)$ in powers of $1 / w$ up to $1 / w^{n}$; for any fixed n. To do this, it is sufficient to examine all optical paths $0_{0} 0_{1}, \ldots 0_{0}$ for which the ray expansion of t^{\prime} diffracted wave starts with a term $f_{m}(\tau), m=p+1 / 2 s \leqslant n$. There are obviously, a finite number of such paths.

In case of a steady-state oscillation the diffracted wave can also be represented in the form of an integral analogous to (5.4). If $u(t, \rho, \theta)$ is a solution of Equation (1.1) $u_{t t}=\triangle u$, then the function

$$
\begin{equation*}
V(\rho, \theta)=\int_{-\infty}^{\infty} e^{-i \omega t} u_{t}(t, \rho, \theta) d t \tag{7.1}
\end{equation*}
$$

satisfies the equation $\triangle V+\omega^{2} V=0$ (it is assumed that the derivatives of u fall off sufficiently rapidly for $t \rightarrow \pm \infty$ so that it is possible to differentiate under the integral $s i g n$ and to integrate by parts). Equations (7.1) and (1.8) give us

$$
\begin{equation*}
V_{0}(\rho, \theta)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i \omega \rho \cosh n_{i} a(\theta+i \eta) d \eta} \tag{7.2}
\end{equation*}
$$

for the wave (1.5) to (1.7).
If $a \equiv(8 \pi)^{-1 / 2}, u_{t}$ coincides with the wave (4.5) coming from an instantaneously acting source and $e^{i \omega t} V_{0}=-1 / 4 i e^{i \omega t} H_{0}{ }^{(2)}(\omega r)$ is a wave from a point source of intensity $e^{i \omega t}$; where $H_{0}{ }^{(2)}$ is a Hankel function.

If, however, $a(\theta) \equiv m(\beta, \theta)$, where the function m is the same as in (4.7), then $e^{i \omega t} V_{0}$ is the diffracted wave corresonding to the plane wave $e^{i \omega t} e^{i \omega(x \cos \beta+y \sin \beta)}$ incident on a wedge. The change of variable integration $5^{e}+t \eta=\downarrow$ reduces (7.2) to Sommerfeld's integral (the difference in paths of integration is related to that fact that Sommerfeld's integral gives the entire field consisting of the diffracted wave (7.2), the incident and reflected waves).

For the multiply diffracted wave (5.4), Equation (7.1) gives us

$$
\begin{gather*}
V_{s}\left(r_{s}, \varphi_{s}\right)=2^{-l}(2 \pi)^{-(s+1) / 2} \int \ldots \int e^{-i \omega z} q_{s} d \eta_{0} \ldots d \eta_{s} \tag{7.3}\\
z=R_{0} \operatorname{cosn} \eta_{0}+\ldots+R_{s-1} \cosh \eta_{s-1}+r_{s}^{\cosh \eta_{s}}
\end{gather*}
$$

where $q_{\text {, }}$ is the same as in (5.4) and the integration on $\eta_{0}, \ldots, \eta_{\text {s }}$ is carried out from $-\infty$ to $+\infty$. It can be proved that the integral converges and admits two differentiations. Therefore, V, is the wave obtained by diffraction of the wave (7.2) at the vertices $O_{1}, \ldots, 0_{0}$.

BIBLIOGRAPHY

1. Sobolev, S.L., Nekotorye voprosy teori1 rasprostranenila kolebanil (Some problems of the theory of propagation of oscillations). Chap. XII in the book by Frank, Ph. and von Mises, R. "Differertsiai'nye i integral' nye uravnenila matematicheskoi fisiki", (Differential and Integral Equations of Mathematical Physics). Part 2, ONTI, 1937.
2. Papadopoulos, V.M., Pulse diffraction by in imperfectly reflecting wedge. J.Australian Math.Soc., Vol.2, No 1, pp.97-106, 1961.
3. Filippov, A.F., Difraktsiia proizvol'noi akusticheskoi volny na kline (Diffraction of an arbitrary acoustic wave by a wedge). PMM Vol.28, N2 2, 1964.
4. Fox, E.N., The diffraction of two-dimensional sound puises incident on an infinite uniform slit in a perfectly reflecting screen. Phil.Trans. Roy.Soc., London, A, Vol. 242 , N\& 839, pp.1-32, 1950.
5. Borovikov, V.A., 0 dvumernoi zadache diffraktsii na mnogougol'rilke (On the two-dimensional problem of diffraction by a polygon). Dokl.Akad. Nauk SSSR, Vol.144, № 4, pp.743-746, 1962.
