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An exact expression in the form of a multiple integral is obtained for an 
acoustic wave which has a circular or straight front and which undergoes 
diffraction at the vertices of a polygon. Formulas are also obtained for 
any term of the geometric-acoustical expansion of this wave near its front. 

1. Var’louo re~x’oroatatloao o? a wava have a front la the ?oam of a 
olroular u-0, In the region t>toWO, O<P<~, 0de <e, he 
are polar coordinates), we consider the solution u(t, p, 9) of the wave 

equation 
Utt = EEpp f p-+.$+ P%tl (I.11 

which Is equal to zero for p z= t (I.e. ahead of the front) and which Is 

homogeneoua*of degree zero In t and p . A wave from a point source of 

constant intensity which Is cut in at t = 0 and the diffracted wave In 

problems of diffraction of a plane wave by a wedge [l and 23 are examples 

of solutions of this type. According to [lf, such a solution is represent- 

able, for p < t, In the form 

u = Re U (Q, 5 = [f _ ($ _ i)“‘] &@ (1.2) 

where U(C) is an analytic function of the complex variable C which is 

purely imaginary on the arc 5 = et*, e1 <e <e,. Conversely, for any Such 

function 17(C) ) Equation (1.2) provides a solution of Equation (1.1) which 

possesses the properties indicated. Setting 

5 = &@+in) 7 u (5) = 4 (e + 4) (1.3) 

In (1.2) and taking into consideration that u = 0 for p = t (i.e. for 

n - 0), we obtain that u - Re U,(e + 5~) is an odd function of n and that 

u = Ul(@ -I- i”rl) - Ul(0 - iq) 
2 

= iq U,’ (0) - ‘$- u; (e) + . . . (1.4) 
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using Equations (1.2) and (1.3) end setting T I t - P , we 0btd.n 

UP TIP 

q= * s 1 _&= \ ps (I+$)]-“‘ds= (y+& i$y 
0 

The equations which have been written imply that 

O” a.(e) 
u = 22 -&- fi(T) 

j=o P 
(1.5) 

j-j (z) = zj+yqj + 3/J, a, (e>= i Vii/Z u,’ (e> = - Jn/2e*~u’ (P) V-9 

According to Section 8 of the paper [3] the series (1.5) must have the 

eeme form as the series (8.2) of 133. Therefore, (the t,,‘o(e) are the same 

aa in t31) 
ai (0) = ($L+z (e), a (W = a, (W 

The series (1.5) gives the geometric-acoustical expansion (ray expansion) 

of the wave of form (1.4). 

It follows from (1.4) to (1.7) that for an analytic function c(e + tq) 

which le real for q I: 0, we have 

(1.8) 

It Is easy to see that this equation 1s also valid for any analytla f’unc- 

tlon d(e + trl). 

P. &vorbi@tlon of tha rolutioa am&r tb boua&x7~ In the sector 
8,~ 0 < 8# let ue consider the solution (1.2) of Equation (1.4) which satlr- 

flee the boundary condition 

duldn = cdulat (c = const , O,<c<oo) (2.1) 
for e = 8, . 

Here au / dn = p-'&z / 88 In the Inner normal derivative to the boundary 

e = 8, of the sector. In particular, for o I 0 the CondltlOn (2.1) reduces 

to the condition au/an - 0 and for o = - to the condition au/at - 0 , 
i.e. to the condition u = 0 , since for t < p we have u - 0 for the eolu- 

tlon (1.2). For a steady-state osclllatlon u = veiol, condition (2.1) 

reduces to Leontovlch’e well-krown condition dV/ an = ic@V. 

For the solution (1.5), the boundary condition aaeumee the form 

Re (c + sin iq) a (e, + iq) = 0 for 9 > 0 (2.2) 
Therefore, the function a (0 + in) is continued analytlcally Into the 

region zel -ez <e <e,, In accordance with Equation 

[c + sin (e -el + idI u (e + id - 4~ (e + id 

~(e+irl)=-Reg(2e,-e++irl)+iImg(281-e++irl) 
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It follows from this that (c + Sin VP) a (6, + cp) la an odd function of Cp 

(~+sinrp)a(8,+rp)~-~c-sinrp)a(8,-~), ‘p=@-Q1 (2.3) 

Therefore, in the case of condition (2.1) for B - 6, (0 # 0) all derl- 

vativea ~(2~) (6,) are expressed In terms of a’, aat . . . .a(an-l) (2.4~ 

a VU = 0, a" (0,) = - 2?-%2 (O,), urV (0,) = 4c-l (a’ (0,) - a” (Ci,)), . . 

3. Rofkatlon irom a bW. In the region y > 0 let the wave 

ui = Re Ufc,) propagate, the wave having a circular front with center at 

(xi, y, ), y,> 0, and let the condition (2.1) be stipulated on the boundary 

Y=O* where a/W - b/by . We shall seek the reflected wave by the method 

of Sobolev [ l] In the form u = Re V(C,, ) , where 

Then C,- CS for y - 0 . Setting u - u,+ u in (2.1), we obtain 

Re [(V’ - U’) i (2 - s2) + 2cc (V’ + U’)l = 0 for Im 5 >O (3.1) 

Therefore, the expression In square brackets can only be equal to Bt , 
where B is a real constant. Noting that for C - ei*, U and tr are 

purely imaginary quantities (see SectSon l), we find 3 = 0 and 

W-9 

Taking any C, such that I<, 1 - 1 (the arbitrariness in the choice of 

arg Co _doee not affect the quantity u ), we may write 

v = Re V (&J (3.3) 

In particular, if u1 Is a wave emanating from a source of unit Intensity 

which starts at the Instant t = 0 at the point (xl, ~~1 , then 

and we obtain for the reflected wave u=ReV(Co) ,bysettlng o=coay, 

(3.4) 

Let us now write out the ray expansion for the reflected wave. The ray 

expansion for the Incident wave u,- Re U(C,) ha8 the form (1.5) to (l.?‘), 

where u, C, p and e should be replaced by u, , C,, p, and 8, . ‘he 
reflected wave v - Re V(Cp) is obtained from the Incident wave by substltu- 

ting Y and C1 for I/ and C, . Therefore, the ray expsneion for the 

reflected wave has the form 
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From (3.5), (3.2) and (1.6) we obtain 

b ((3) = A ((3) a (8), li ((3) = c&$ (3.6) 

4. Dlffrrotlon of a wlva with I olroulu front. Let the wave (1.2) with 

a citcular front and center at the point 0, undergo diffraction by an angle 

with vertex 0, . In this Section It will be assumed that the point 0, 

does not lie on a side of the angle, Boundary conditions of the type (2.1) 

are specified on the sides of the angle. The values of the coefficients c 

are not necessarily the same on the two sides of the angle. Let (p,e) and 

(F,v) be polar coordinates with poles 0, and 0, and parallel polar axes; 

for the point 0, , we have r =R, cp=8. 

According to Section 2 of [3], the solution of this problem Is the sum 

of the Incident, reflected and refracted waves. A method of forming the 

reflected wave has been explained above. The diffracted wave was obtained 

in (33 in the form of a ray expansion, the series (8.4), which converges 

near the front. We shall express the sum of this series in the form of an 

integral. To this end, we write the series (8.4) of [33 In the following 

form, taking into account the form of the function I, In (1.5), (1.6) and 

using the notation a (n + p) m (cp, p) = q @,cp) 

w = i i ~~kLzkpL2j(pq (fltcp) .++l 

k=o j=o 
23+kjlk!@+‘hri+‘,i, 1‘ (I’ -t k $ 2) 

It follows from (4.1) that 

5 cc co 

8W 

at= 

(-l)j+kL,,p LzjVq (p, cp) 

2j+kj!k!~kf%,.j+% 

Applying Formula (1.8) to the series in (4.2) twice, we find 
5 

(the sum Is taken over all four combinations of the f signs). 

Either from Equation (4.3) or directly from (4.1) we can find that 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

where n2 Is the region R (COshvo - 1) + r (coshqI - 1)~: 1. 

We note that the function w*= am/a: Is the diffracted wave for the lncl- 

dent wave u*= au/at , where u Is a wave of the form (1.2). An example of 

this type Is the wave U* due to an Instantaneously acting source (I.e. the 

source Is cut in and then Immediately afterward cut out) 
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Here 

U (5) = - (Z&z)-l In 5, a (e ) = (8n)p 

In this way the right-hand side of (4.3) with q (@, cp) = (8J’C~‘~~ 772 (rp, b) 

gives the solution W* of the plant problem of diffraction of the wave (4.5) 

due to the source by a wedge under the boundary conditions (2.1). 

The function m(cp,e) Is determined In Section 8 of [33. A comparison of 

Equation (8.3) of [3] with Equations (1.4) to (1.7) of this paper results in 

172 (T, B) = NJ@&’ (cp), Re U, (cp -I- iq) = uf (4.6) 
where ~0 Is the diffracted wave (for the same wedge) corresponding to the 

incident plane wave (3.1) of [3] . 

In the case when Equation (1.1) Is considered In the sector e,< cp < ea, 
with the boundary condition u = 0 = 8, and cp = Ba, the function 
m” and U, can be found by the methoi?se? forth In Cl] . Then 

(4.7) 

71 = - +f3 = n - &, Tz = - r4 = n + P,, 91 = cp - f&7 ,Jl = p - 81 

In the case of tht boundary condition au/an = 0 , one need only change 
the signs of tht first and fourth terms of the sum In (4.7). 

For the case of the boundary condition (2.1), m(cp,S) Is determined from 
(4.6)) where vsin VT dTV 

U,’ (T) z ____ - 
cos2 v’p Cl< i=scc YQ (v=$) 

If the wedge at which diffraction takes place Is situated the same way as In 
[2], then dW/dC Is determined by Equation (11) of [ 23 for y = n - S; here 
$ and C are the saTe as In [2]. 

We note that we always have m (v,, [3) z m (3, Cp) (Expression (4.1) should 
not be altered If the positions of the source and the point of observation 
are Interchanged). 

5. Multiple diifrrotlon, Let the wave u0 having a front In the form of 

a circular arc with center 0, be diffracted by an angle with vertex 0, and 

straight sides on which boundary conditions of the form (2.1) are specified. 

The diffracted wave u, Is one again diffracted by an angle with vertex O,, 

and so on. The values of the coefficient o of (2.1) may be different on 

the various sides of the angles; the values o = 0 and o = o will also 

be allowable. An expression 1s sought for the wave u, which IS obtained 

after diffraction at the vertices O,,..., 0, (the same vertex may appear 

several times, with different subscripts, In the sequence O,,..., 0,). 

This formulation Includes the problems of diffraction by a slit, a seg- 
ment , a polygon, or by several polygons arbitrarily situated In the plane 
(except In cases when a point of junction of wave fronts strikes a vertex). 
In the case of diffraction by a slit, re resentatlons of diffracted waves 
by multiple integrals were obtained In [ e ]. In the case of diffraction by 
a polygon, an approximate representation of the diffracted waves near the 
front only was obtained In C5] . 

Let rZ ,(P~ be polar coordinates wlth pole OX (k = 0, 1, . . . , 8) and 
parallel polar axes. Each point Ok,, has the coordinates R, , pr+ TT in 



the systen with pole Ok . We denote by u,(T,, r,, cp,) the wave with cen- 

ter 0, which Is obtained as a result of diffraction of the wave u,, by the 

angles o,, . . . . 0.; here ~,zt-R,,-...-RR,_1-r8. Let ~~'0 be 

the frontof the Incident wave u0 and let uO= 0 ahead of the front. Then 

7. = 0 Is the front of the wave u,, and for 7,~ 0 we have u,= 0 . Let 
the Incident wave U, be represented by Equations (l.5) to (1.7) for !3 = Q,, 

p =rO,'r=TO . Then the wave U, Is represented by the ray expansion (8.4) 

of [ 33 near the front, where B, cp, r, R, 7 are replaced by BoD ‘pl t rl J Aor 

T1 * By transforming this series to a form analogous to (4.1) we obtain a 

representation of the wave uI In the form of a sum of waves each of which 

is expressed by a series of the form (1.5), but with different a,(e) and 

YJ(T) . After diffraction at the vertex Op, each of these waves again pro- 

vides a wave of the form (4.1). By adding these.latter we obtain a wave Us. 

Considering dlffractldn of the wave ua at the vertex 03, and then at the 

vertices O,,..., O,, we obtain analogously (for Z = 0) 

(- 1) 
j,+...+j 

bj*....i, = 

"Laj O... ,p LwL2y q8 
IS-1 

2 
j,+...+j,i1. 

lo!...js! Ro 
ioQl2 

. . R,_l js_l+‘/2f is+‘:? 
s 

(5.2) 

Each function m,(~,_~, cpI ) is determined analogously to m(e, p) In 

accordance with Equation (4.6), where 0 1~ Is now the wave which arises upon 

diffraction of a plane wave (the same as ln (4.6)) moving from O,_, to 0, 

at the vertex Oi . The series (5.1) Is absolutely and uniformly convergent 

In the vicinity of the front of the wave u, . The width of the region of 

convergence decreases to zero as we approach points of junction of the 

fronts of u, and u,_, . Grouping the terms of the series, we obtain 

ray expansion of the wave U, 

wave 

the 

(5.3) 

By transforming the series (5.1) using the method of Section 4, we obtain 

The region of integration D,+, IS determined by the Inequality 

& +'q,, - 1) + . . . + &-I +“%-I - 1) + r, k‘=‘% - I)<% (5.5) 

It Is also posslble to represent au,/at in the form of an e-fold Integral, 

analogously to (4.3). 

Equations (5.1) to (5.4) which have been derived, and also Equation (8-P) 
of [3], are valid for the case when none of the segments O,O1,OIO~,.. ., Os-los 
which constitute the path of a ray up to the vertex 0, lies on the boundary. 
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In the case when Z of them lie on the boundary, the factor FL appears in 
these formulas. This happens of the following reason. The wave t(e, for 
example, Is caused by diffraction at the vertex 0, of the waves n, and v1 
simultaneously, the latter being obtained by reflection of n, from the side 
of the angle O2 visible from the point O1. If the segment 0102 lies on 
the boundary, then, as can be shown, n,= U) and only one-half of the wave 
obtained by diffraction at polnt 0, should be considered as the incident 
wave for the vertex Oz. 

Equation (5,4), as also (4.3) and (4.4), Is valid not only In the vicinity 
of the front, but also in the entire region occupied by the diffracted wave 
IL,, except for these values of cp, for which the function m, (@._, , cp, 
a singularity, i.e. except for the radii which connect the point 0, ?E 
points of Juncture of the wave front of U, and other fronts. 

To prove this we note that near the front the function (5.4) coincides 
wlth 5.1 . 

I: j 
Therefore, It satisfies Equation (1.1) and the boundary condl- 

tlon 2.1 near the front. But, since It Is analytic, (5.4) satisfies these 
everywhere except for the radii Indicated above. It remains to prove by 
Induction that the wave U* Is precisely the wave which comes about as a 
result of diffraction of the wave u,_~ at the angle 0,. Let the wave @t-l 
formed by diffraction at the point O,_, be expressed by the formula obtained 
from 5.4) by substituting a - 1 for 8, and by u,_ = 0 in the shadow 
zone t a shadow can be caused by the presence of an obs acle, c 
vertex 0,). 

the angle with 
Using the fact that for Q= TT + @,_,, I.e. on the boundary of 

the shadow, the function m(@‘_,, Q) has a pole with an easily computed 
residue, It can be shown that the sum ~1,_~ + u, , where u. is determined by 
(5.4), is continuous along with its first derivatives for 
follows from this that u, _I + u. 

p=iiB._‘. It 
is a solution of Equation 1.1 in a region 

containing the radius cp, = n + @, _, . 

The sum u,_,+ u, may be Investigated similarly on the radius drawn from 
the point of juncture of the wave u, and the front of the reflected wave 
V, _i, If the latter exists. Here the following expression is used for the 
wave u.,, obtained by reflection of the wave u._, from one side of the 
angle 5,’ 

‘1,-l (3, + illi), . . .I ‘P,_~ -I- iq,_J k (~p,_~ - a + h i-h,_,) d’lo - . . d'ls-1 

where o is the polar angle giving the direction of the straight line on 
which the reflection takes place; rf,;c$_, are polar coordinates with pole 
at the point OF_, , which Is the Point synunetrical to CI,_~ with respect to 
this line; k Is the reflection coefficient of (.3.6); and h iS the inte- 
ger so that 0 <~p,_~ - a f hn < n. To prove Equation (5.6) It Is sufficlt nt 
to verify that the sum u,_,+ v,_~ satisfies the boundary condition (2.1). 

If the polygon on which diffraction occurs Is not convex, there may exist 
waves which experience reflection from the sides of the polygon after a cer- 
tain number of diffractions at Its vertices and are then once a aln dlffrac- 
ted at vertices etc. Each such wave is again expressed by (5.1 f and (5.4), 
but now 

Q, (Pot . * 33 P,_l, cp,) = a (n -k PO) ml (PO, fi -t PI) . . . mj (Pjs19 fi+Pj) X 

X k fPj - aj + hjn) mj+I (2aj - Pj, JC + Pj+,) - - - m8 (Pa_1; tpJ (5.7) 

Thus, If a ray undergoes a reflection from a straight line which is char- 
acterized by the polar angle 
then the expression for 
k(e) is the reflection 
0 < Pj - aj i_ iljn < Jl i and In the factor which k'ollows (in the present case 
m +L), the first argument a Is replaced by 2uat- Bll l.e.X~Yt;eP;f~;efle 
ok the direction from which &he reflected ray approaches. 
of several reflections, a corresponding number of factors k is ap ended. 
The roof is carried out analogously to the proof of Equations 
(5.8. 

(5.4 P and 

6. Invrrtigrtlon of the dlifraotrd w&v@~ The coefficients A.,tr,,%) 

of the ray expansion (5.3) have a form 
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P, = (R, . . . Rs_lrs)‘l* 

where 1 and 4, are the same as in (5.2), and @, and A, replace v, and 

r, * For large n , Equations (5.3) and (5.2) for A,, are unwieldy. It Is 

sometimes more convenient to obtain several of the leading nonzero terms of 

the series (5.3) by finding the expansions of the form (5.3) or (6.2) (see 

below) successively for the waves u,, . . ., u, . 

Let the ray expansion (or several of its leading terms) be known for the 

According to Section 8 of [ 33, we may write 

(6.2) 
%==O 

Here each term has the form 

O” (-1) 
F (P7 fm (@9 b w E 2 

%j% (e) 

i=O 
2jj! pj+*/, fm+j f$ (6.3) 

and is, therefore, a solution of the wave equations; the functions b, (cp, _ I ) 
are different in the various terms. The convergence of the series (6.2) in 

the vicinity of the front Is guaranteed by the assumption that 

(6.4) 

Diffraction of a wave of the form (6.3) at the vertex 0, results in a 

wave of the form (li.l), and diffraction of the wave u,,~ of the form (6.2) 

where 1 = 0 if the segment O,,, 0, does not lie on the boundary and t =1 

if it does; m, is the same as in Section 5. The series (6.5) Is convergent 

under the condition (6.4) near the wave front and an Inequality similar to 

(6.4) is valid for it also. Thus, If the incident wave u, is written in 

the form (6.2) for 8 = 1, and If the estimate (6.4) holds B,(Q), then 

Ul,“., u. can be found successively In accordance with (6.5). The trans- 

formation from the expression of u, in the form (6.5) to a ray expansion 

may be effected with the aid of Equation (6.3). 

If the segment O,,, 0, lies on the boundary and the boundary condition 

there is specified to be u = 0 or the condition (2.1) for c # 0 , the 

first term of the sum in (6.5) vanishes. Let us find the subsequent terms. 

The boundary condition of O,_,O, can be written as 
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au a. au au 
2i-= 

--- 
b1 affs+ (‘ps_l = 2% + P,_,h - = k if at (cp, = I%-1) 

s 

Here (I = l/c or (L =-l/c ; in the case of the boundary condition u=O 

we have Q. = 0. According to (2.4) we have on O,_,O, the fOllOWlng rela- 

tions for the functions b = bn_k (n f g,_,) and m = m, (ps-~,(p8) : 

b = 0, b” = 2ab’, b’v = 4a (b”’ - b’), . . , 

m = 0, m” = - 2um’,‘mrV = 4a (m’ - m”‘), . . . . (6.6) 

where all derivatives are taken with respect to B,_l. Therefore, 

L,bm = 0, L&m = 2b’m’, L,bm = 4b”‘m’ + 4b’m”’ + (5 - 24~~) b’m’, . . . 

in Equation (6.5) and the ray expansion of the diffracted wave begins as 

Thus, If the leading term of the ray expansion of the incident wave u0 

contains y0(7) , the ray expansion for the diffracted wave contains 

fp+l19 b), where 8 Is the number of vertices O,,..., 0. encountered on 

the path of the ray and p Is the number of segments Ok_,& of the path of 

the ray which lie on a boundary having the boundary condition u = 0 or 

(2.1) for c # 0 . This means that the smoothness of onset of the wave u, 

Is greater by p + )s units than for the lncldent wave u,, ; I.e. If 

uo _ bO? near the front, then U, _ bs~+p+%. 

7. Btrrdfr-~trtr.ditforotlon. 
14 (t, z, y) = u (z, y) etot 

For a steady-state oscillation of the form 
one usually obtains thq high-frequency asymptotic 

expresslon \UJ 4 =) by setting )m(~)=(i~)-me“"f In the ray expansion for u. 
In the case of diffraction being considered here the leading term of the 
asymptotic expansion of the wave u, (for w-t= 

o-P-'/~s and a phase lag of (P + v)n/2 
I acquires an amplitude fac- 

tor of relative to I,+,, where p 
Is the number of segments of the path of he ray which Lie on a boundary 
having either the boundary condition v = 0 or the lmpedence boundary con- 
dition dv / an = icwv, c # 0. 

Thus, for the problems ofdiffraction by polygons, formulated at the 
beginning of Section 5, the method which has been explained allows us to 
write out In a finite number of operations the exact expressions for the 
coefficients of an asymptotic expansion of the solution u(x,y) In powers 
of 1/u1 up to l/wn; for any fixed n . To do this', it is sufficient to 
examine all optical paths 0,O 
diffracted wave starts with a t&i”f,(~)~ 

0, for which the ray exp&;:Fa;; t' 
m= P -f ‘/as< n. 

obviously, a finite number of such paths. 

In case of a steady-state oscillation the diffracted wave can also be 
represented In the form of an Integral analogous to (5.4). If u(t, p, 
Is a solution of Equation (1.1) 

0) 
+ = 0% then the function 

v (p, 8) = T e-iof Uf (t, p, e) tit (7.1) 
-m 

satisfies the equation nV+ m2V= 0 (It is assumed that the derivatives 
of u fall off sufficiently rapidly for t - f - so that it is osslble 
to differentiate under the Integral sign and to Integrate by parts P . 
tions (7.1) and (1.8) give us 

Equa- 
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(7.2) 

for the wave (1.5) to (1.7). 

If a = (8n)-I/‘, ut coincides with the wave (4.5) coming from an lnstantane- 
ously acting source and ,iotvO = _ 1/~i~i~tfi,(2)(~~) Is a wave from a point 

source of intensity eiw'; , where MO\') is a Rankel function. 

If, however., a (8) = m (P, 0), where the function m Is the same as In 

(4.7), then e""'v, Is the diffracted wave oorresondlng to the plane wave 

e~~teio(rcosP+y8infl) incident on a wedge. The change of variable Integration 
8'+ f,Tl = Jr reducks (7.2) to Sommerfeld's Integral (the difference In paths 
of.lntegratlon Is related to that fact that Sommerfeld's Integral gives the 
entire field consisting of the diffracted wave (7.2), the Incident and 
reflected waves). 

For the multiply diffracted wave (5.4), Equation (7.1) gives us 

v, (rs,cp,) = 2-l (24-@+1)‘a s s . . . ewiozqs dqo . . . dr), (7.3) 

z = R,,c~“q,, + . . . +-f&~sh?& + rf-hq, 

where q, Is the same as In (5.4) and the Integration on 51 Is car- 
ried out from -m to +=. It can be proved that the in?&% %nverges 
and admits two differentiations. Therefore, V, Is the wave obtained by 
diffraction of the wave (7.2) at the vertices O,,..., 0, . 
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